1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
| // 42jerrykim.github.io에서 더 많은 정보를 확인 할 수 있다
#include <bits/stdc++.h>
using namespace std;
static const long long MOD = 1000000007LL;
static inline long long modNorm(long long x) {
x %= MOD;
if (x < 0) x += MOD;
return x;
}
struct SplitMix64Hash {
static uint64_t splitmix64(uint64_t x) {
x += 0x9e3779b97f4a7c15ULL;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9ULL;
x = (x ^ (x >> 27)) * 0x94d049bb133111ebULL;
return x ^ (x >> 31);
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM =
chrono::steady_clock::now().time_since_epoch().count();
return (size_t)splitmix64(x + FIXED_RANDOM);
}
};
long long N;
int LIM;
vector<int> mu;
vector<long long> prefMu; // Mertens prefix for <= LIM
vector<long long> fibSmall; // F_n mod MOD for n <= LIM+3
vector<long long> gSmall; // g(n) = (F * mu)(n) mod MOD for n <= LIM
vector<long long> prefGSmall; // prefix sum of gSmall mod MOD
unordered_map<long long, long long, SplitMix64Hash> memoM;
unordered_map<long long, long long, SplitMix64Hash> memoG;
unordered_map<long long, uint64_t, SplitMix64Hash> memoFibPair; // packs (F_n, F_{n+1})
static inline uint64_t packPair(uint32_t a, uint32_t b) {
return (uint64_t(a) << 32) | uint64_t(b);
}
static inline pair<long long, long long> unpackPair(uint64_t p) {
return {(long long)(p >> 32), (long long)(p & 0xffffffffULL)};
}
// returns (F_n, F_{n+1}) mod MOD
pair<long long, long long> fibPair(long long n) {
if (n == 0) return {0, 1};
if (n <= (long long)LIM + 2) return {fibSmall[(int)n], fibSmall[(int)n + 1]};
auto it = memoFibPair.find(n);
if (it != memoFibPair.end()) return unpackPair(it->second);
auto [a, b] = fibPair(n >> 1); // a=F_k, b=F_{k+1}
long long two_b_minus_a = modNorm(2 * b - a);
long long c = (a * two_b_minus_a) % MOD; // F_{2k}
long long d = ((a * a) % MOD + (b * b) % MOD) % MOD; // F_{2k+1}
pair<long long, long long> res;
if ((n & 1) == 0) res = {c, d};
else res = {d, modNorm(c + d)};
memoFibPair.emplace(n, packPair((uint32_t)res.first, (uint32_t)res.second));
return res;
}
static inline long long fibN(long long n) { return fibPair(n).first; } // F_n mod MOD
// sum_{k=a..b} F_k mod MOD, with Fibonacci indexed as F_1=1,F_2=1
static inline long long fibSumInterval(long long a, long long b) {
if (a > b) return 0;
// sum_{k=1..m} F_k = F_{m+2} - 1
// => sum_{k=a..b} = F_{b+2} - F_{a+1}
return modNorm(fibN(b + 2) - fibN(a + 1));
}
// M(n) = sum_{i=1..n} mu(i)
long long mertens(long long n) {
if (n <= LIM) return prefMu[(int)n];
auto it = memoM.find(n);
if (it != memoM.end()) return it->second;
__int128 res = 1;
for (long long l = 2; l <= n;) {
long long q = n / l;
long long r = n / q;
res -= (__int128)(r - l + 1) * mertens(q);
l = r + 1;
}
long long ans = (long long)res;
memoM.emplace(n, ans);
return ans;
}
// G(x) = sum_{t=1..x} g(t) mod MOD, where g = F * mu (Dirichlet convolution)
long long prefG(long long x) {
if (x <= 0) return 0;
if (x <= LIM) return prefGSmall[(int)x];
auto it = memoG.find(x);
if (it != memoG.end()) return it->second;
long long res = 0;
for (long long l = 1; l <= x;) {
long long y = x / l;
long long r = x / y;
long long sumF = fibSumInterval(l, r); // sum_{d=l..r} F_d
long long My = mertens(y);
res = (res + sumF * modNorm(My)) % MOD;
l = r + 1;
}
memoG.emplace(x, res);
return res;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> N;
LIM = (int)min<long long>(1000000LL, N);
// Linear sieve for mu up to LIM
mu.assign(LIM + 1, 0);
prefMu.assign(LIM + 1, 0);
vector<int> primes;
vector<int> isComp(LIM + 1, 0);
mu[1] = 1;
for (int i = 2; i <= LIM; i++) {
if (!isComp[i]) {
primes.push_back(i);
mu[i] = -1;
}
for (int p : primes) {
long long v = 1LL * i * p;
if (v > LIM) break;
isComp[(int)v] = 1;
if (i % p == 0) {
mu[(int)v] = 0;
break;
} else {
mu[(int)v] = -mu[i];
}
}
}
for (int i = 1; i <= LIM; i++) prefMu[i] = prefMu[i - 1] + mu[i];
// Fibonacci precompute up to LIM+3
fibSmall.assign(LIM + 4, 0);
fibSmall[0] = 0;
fibSmall[1] = 1;
for (int i = 2; i <= LIM + 3; i++) {
fibSmall[i] = fibSmall[i - 1] + fibSmall[i - 2];
if (fibSmall[i] >= MOD) fibSmall[i] -= MOD;
}
// gSmall(n) = sum_{d|n} F_d * mu(n/d) mod MOD
gSmall.assign(LIM + 1, 0);
for (int d = 1; d <= LIM; d++) {
long long Fd = fibSmall[d];
for (int k = 1, n = d; n <= LIM; k++, n += d) {
int muk = mu[k];
if (muk == 0) continue;
long long add = (muk == 1 ? Fd : (MOD - Fd));
long long v = gSmall[n] + add;
if (v >= MOD) v -= MOD;
gSmall[n] = v;
}
}
prefGSmall.assign(LIM + 1, 0);
for (int i = 1; i <= LIM; i++) {
prefGSmall[i] = (prefGSmall[i - 1] + gSmall[i]) % MOD;
}
// Reserve caches
memoM.reserve(1 << 20);
memoG.reserve(1 << 20);
memoFibPair.reserve(1 << 20);
// Answer: S(n)=sum_{t=1..n} g(t) * floor(n/t)^2
long long ans = 0;
for (long long l = 1; l <= N;) {
long long q = N / l;
long long r = N / q;
long long seg = modNorm(prefG(r) - prefG(l - 1));
long long qq = q % MOD;
ans = (ans + seg * ((qq * qq) % MOD)) % MOD;
l = r + 1;
}
cout << ans << "\n";
return 0;
}
|