1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
| // 더 많은 정보는 42jerrykim.github.io 에서 확인하세요.
#include <bits/stdc++.h>
using namespace std;
static inline int readInt() {
int x = 0, c = getchar_unlocked(), s = 1;
while (c != '-' && (c < '0' || c > '9')) c = getchar_unlocked();
if (c == '-') { s = -1; c = getchar_unlocked(); }
for (; c >= '0' && c <= '9'; c = getchar_unlocked()) x = x * 10 + (c - '0');
return x * s;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n = readInt();
int m = readInt();
int A = readInt();
int B = readInt();
vector<int> X(n + 1), Y(n + 1);
vector<int> leftNodes, rightNodesAll;
for (int i = 1; i <= n; i++) {
X[i] = readInt();
Y[i] = readInt();
if (X[i] == 0) leftNodes.push_back(i);
if (X[i] == A) rightNodesAll.push_back(i);
}
const int Emax = 2 * m + 5;
vector<int> head(n + 1, -1), headR(n + 1, -1);
vector<int> to(Emax), nx(Emax), toR(Emax), nxR(Emax);
int ePtr = 0;
auto addEdge = [&](int u, int v) {
to[ePtr] = v; nx[ePtr] = head[u]; head[u] = ePtr;
toR[ePtr] = u; nxR[ePtr] = headR[v]; headR[v] = ePtr;
++ePtr;
};
for (int i = 0; i < m; i++) {
int c = readInt(), d = readInt(), k = readInt();
addEdge(c, d);
if (k == 2) addEdge(d, c);
}
// 1) fromLeft: 서쪽에서 도달 가능한 정점 표시
vector<char> fromLeft(n + 1, 0);
deque<int> dq;
for (int s : leftNodes) {
if (!fromLeft[s]) { fromLeft[s] = 1; dq.push_back(s); }
}
while (!dq.empty()) {
int u = dq.front(); dq.pop_front();
for (int ei = head[u]; ei != -1; ei = nx[ei]) {
int v = to[ei];
if (!fromLeft[v]) { fromLeft[v] = 1; dq.push_back(v); }
}
}
// 2) SCC (iterative Kosaraju)
vector<char> seen(n + 1, 0);
vector<int> it(n + 1, -1), order; order.reserve(n);
vector<int> st;
for (int s = 1; s <= n; s++) if (!seen[s]) {
st.clear(); st.push_back(s); seen[s] = 1; it[s] = head[s];
while (!st.empty()) {
int u = st.back();
int &ei = it[u];
while (ei != -1 && seen[to[ei]]) ei = nx[ei];
if (ei == -1) { order.push_back(u); st.pop_back(); }
else { int v = to[ei]; ei = nx[ei]; seen[v] = 1; it[v] = head[v]; st.push_back(v); }
}
}
vector<int> comp(n + 1, -1);
int compCnt = 0;
for (int idx = (int)order.size() - 1; idx >= 0; idx--) {
int s = order[idx];
if (comp[s] != -1) continue;
st.clear(); st.push_back(s); comp[s] = compCnt;
while (!st.empty()) {
int u = st.back(); st.pop_back();
for (int ei = headR[u]; ei != -1; ei = nxR[ei]) {
int v = toR[ei];
if (comp[v] == -1) { comp[v] = compCnt; st.push_back(v); }
}
}
++compCnt;
}
// 3) 동쪽 정점 중 서쪽에서 도달 가능한 것들만 y 오름차순 인덱싱
vector<pair<int,int>> rightFiltered; // (y, id)
rightFiltered.reserve(rightNodesAll.size());
for (int v : rightNodesAll) if (fromLeft[v]) rightFiltered.emplace_back(Y[v], v);
sort(rightFiltered.begin(), rightFiltered.end());
int R = (int)rightFiltered.size();
const int INF = 0x3f3f3f3f;
vector<int> lo(compCnt, INF), hi(compCnt, -1);
for (int i = 0; i < R; i++) {
int v = rightFiltered[i].second;
int c = comp[v];
lo[c] = min(lo[c], i);
hi[c] = max(hi[c], i);
}
// 4) 압축 DAG 구성 및 위상정렬
vector<int> headD(compCnt, -1), toD(Emax), nxD(Emax), indeg(compCnt, 0);
int ePtrD = 0;
auto addEdgeD = [&](int u, int v) {
toD[ePtrD] = v; nxD[ePtrD] = headD[u]; headD[u] = ePtrD;
indeg[v]++; ++ePtrD;
};
for (int u = 1; u <= n; u++) {
int cu = comp[u];
for (int ei = head[u]; ei != -1; ei = nx[ei]) {
int v = to[ei]; int cv = comp[v];
if (cu != cv) addEdgeD(cu, cv);
}
}
deque<int> q;
for (int i = 0; i < compCnt; i++) if (indeg[i] == 0) q.push_back(i);
vector<int> topo; topo.reserve(compCnt);
while (!q.empty()) {
int u = q.front(); q.pop_front();
topo.push_back(u);
for (int ei = headD[u]; ei != -1; ei = nxD[ei]) {
int v = toD[ei];
if (--indeg[v] == 0) q.push_back(v);
}
}
// 5) 역위상에서 자식 구간을 부모로 병합
for (int i = (int)topo.size() - 1; i >= 0; i--) {
int u = topo[i];
for (int ei = headD[u]; ei != -1; ei = nxD[ei]) {
int v = toD[ei];
if (hi[v] != -1) {
if (hi[u] == -1) { lo[u] = lo[v]; hi[u] = hi[v]; }
else { lo[u] = min(lo[u], lo[v]); hi[u] = max(hi[u], hi[v]); }
}
}
}
// 6) 서쪽 정점 y 내림차순 출력
vector<pair<int,int>> leftSorted;
leftSorted.reserve(leftNodes.size());
for (int v : leftNodes) leftSorted.emplace_back(-Y[v], v);
sort(leftSorted.begin(), leftSorted.end());
ostringstream out;
for (auto &p : leftSorted) {
int v = p.second; int c = comp[v];
int ans = (hi[c] == -1 ? 0 : (hi[c] - lo[c] + 1));
out << ans << '\n';
}
cout << out.str();
return 0;
}
|