1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
| // 더 많은 정보는 42jerrykim.github.io 에서 확인하세요.
#include <bits/stdc++.h>
using namespace std;
using int64 = long long;
const int64 INF = (1LL << 60);
struct Edge {
int to, rev;
int64 cap;
Edge(int t, int r, int64 c) : to(t), rev(r), cap(c) {}
};
struct Dinic {
int N;
vector<vector<Edge>> g;
vector<int> level, it;
Dinic(int n) : N(n), g(n), level(n), it(n) {}
void add_edge(int u, int v, int64 c) {
g[u].emplace_back(v, (int)g[v].size(), c);
g[v].emplace_back(u, (int)g[u].size()-1, 0);
}
bool bfs(int s, int t) {
fill(level.begin(), level.end(), -1);
queue<int> q; level[s] = 0; q.push(s);
while (!q.empty()) {
int u = q.front(); q.pop();
for (auto &e : g[u]) if (e.cap > 0 && level[e.to] == -1) {
level[e.to] = level[u] + 1;
q.push(e.to);
}
}
return level[t] != -1;
}
int64 dfs(int u, int t, int64 f) {
if (u == t) return f;
for (int &i = it[u]; i < (int)g[u].size(); ++i) {
Edge &e = g[u][i];
if (e.cap > 0 && level[e.to] == level[u] + 1) {
int64 ret = dfs(e.to, t, min(f, e.cap));
if (ret > 0) {
e.cap -= ret;
g[e.to][e.rev].cap += ret;
return ret;
}
}
}
return 0;
}
int64 max_flow(int s, int t) {
int64 flow = 0, add;
while (bfs(s, t)) {
fill(it.begin(), it.end(), 0);
while ((add = dfs(s, t, INF)) > 0) flow += add;
}
return flow;
}
vector<int> reachable_from(int s) {
vector<int> vis(N, 0);
stack<int> st; st.push(s); vis[s] = 1;
while (!st.empty()) {
int u = st.top(); st.pop();
for (auto &e : g[u]) if (e.cap > 0 && !vis[e.to]) {
vis[e.to] = 1; st.push(e.to);
}
}
return vis;
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m;
if (!(cin >> n >> m)) return 0;
int s, t; cin >> s >> t; --s; --t;
vector<int64> cost(n);
for (int i = 0; i < n; ++i) cin >> cost[i];
auto in = [&](int v){ return 2*v; };
auto out = [&](int v){ return 2*v+1; };
Dinic dinic(2*n);
// 모든 정점에 원래 비용을 사용 (s, t 포함해서 점거 가능)
for (int v = 0; v < n; ++v) {
dinic.add_edge(in(v), out(v), cost[v]);
}
// 무방향 간선 → 양방향 무한 용량
for (int i = 0; i < m; ++i) {
int u, v; cin >> u >> v; --u; --v;
dinic.add_edge(out(u), in(v), INF);
dinic.add_edge(out(v), in(u), INF);
}
int S = in(s), T = out(t);
dinic.max_flow(S, T);
auto reach = dinic.reachable_from(S);
vector<int> ans;
for (int v = 0; v < n; ++v) {
if (reach[in(v)] && !reach[out(v)]) ans.push_back(v+1);
}
sort(ans.begin(), ans.end());
for (int i = 0; i < (int)ans.size(); ++i) {
if (i) cout << ' ';
cout << ans[i];
}
cout << '\n';
return 0;
}
|