1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
| // 더 많은 정보는 42jerrykim.github.io 에서 확인하세요.
#include <bits/stdc++.h>
using namespace std;
using int64 = long long;
const int64 NEG_INF = -(1LL<<60);
int N, K;
vector<vector<pair<int,int>>> adj;
vector<int64> dfs(int u, int parent) {
// dp[t] = max contribution within subtree of u when exactly t nodes are chosen in this subtree
vector<int64> dp(1, 0); // t = 0
int currentCap = 0; // current max t index available in dp
for (auto [v, w] : adj[u]) {
if (v == parent) continue;
vector<int64> child = dfs(v, u);
// child's contribution + edge(u-v) contribution for selecting t in v-subtree
int childCap = (int)child.size() - 1;
vector<int64> bestChild(childCap + 1, NEG_INF);
for (int t = 0; t <= childCap; ++t) {
int m = min(t, (K + 1) - t);
bestChild[t] = child[t] + 1LL * w * m;
}
// knapsack merge dp with bestChild
int newCap = min(K, currentCap + childCap);
vector<int64> ndp(newCap + 1, NEG_INF);
for (int a = 0; a <= currentCap; ++a) {
if (dp[a] <= NEG_INF/2) continue;
for (int b = 0; b <= childCap; ++b) {
if (a + b > K) break;
ndp[a + b] = max(ndp[a + b], dp[a] + bestChild[b]);
}
}
dp.swap(ndp);
currentCap = newCap;
}
// Optionally select node u itself (except root 1): increases count by 1 with no local cost
if (u != 1) {
int newCap = min(K, currentCap + 1);
vector<int64> ndp(newCap + 1, NEG_INF);
for (int t = 0; t <= currentCap; ++t) {
// do not select u
ndp[t] = max(ndp[t], dp[t]);
// select u
if (t + 1 <= K) ndp[t + 1] = max(ndp[t + 1], dp[t]);
}
dp.swap(ndp);
currentCap = newCap;
}
return dp;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T;
if (!(cin >> T)) return 0;
for (int tc = 1; tc <= T; ++tc) {
cin >> N >> K;
adj.assign(N + 1, {});
for (int i = 2; i <= N; ++i) {
int p, c;
cin >> p >> c;
adj[p].push_back({i, c});
adj[i].push_back({p, c});
}
vector<int64> rootDP = dfs(1, 0);
int64 best = rootDP[K]; // sum over edges of w * min(s, K+1 - s)
int64 answer = 2 * best; // total travel time (round trips across edges)
cout << "Case " << tc << ": " << answer << '\n';
}
return 0;
}
|